Structural Basis of Pore Formation by Mosquito-larvicidal Proteins from Bacillus thuringiensis
نویسنده
چکیده
The insecticidal character of the three-domain Cry -endotoxins produced by Bacillus thuringiensis during sporulation is believed to be caused by their capability to generate lytic pores in the target larval midgut cell membranes. This review describes toxic mechanisms with emphasis on the structural basis of pore formation by two closely related dipteran-specific toxins, Cry4Aa and Cry4Ba, which are highly toxic to mosquito larvae. One proposed toxic mechanism via an “umbrella-like” structure involves membrane penetration and pore formation by the 45 transmembrane hairpin. The lipid-induced -conformation of 7 could possibly serve as a lipid anchor required for an efficient insertion of the pore-forming hairpin into the bilayer membrane. Though current electron crystallographic data are still inadequate to provide such critical insights into the structural details of the Cry toxin-induced pore architecture, this pivotal evidence clearly reveals that the 65-kDa active toxin in association with the lipid membrane could exist in at least two different trimeric conformations, implying the closed and open states of a functional pore.
منابع مشابه
Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution.
The Cry4Aa delta-endotoxin from Bacillus thuringiensis is toxic to larvae of Culex, Anopheles, and Aedes mosquitoes, which are vectors of important human tropical diseases. With the objective of designing modified toxins with improved potency that could be used as biopesticides, we determined the structure of this toxin in its functional form at a resolution of 2.8 angstroms. Like other Cry del...
متن کاملFunctional characterizations of residues Arg-158 and Tyr-170 of the mosquito-larvicidal Bacillus thuringiensis Cry4Ba
The insecticidal activity of Bacillus thuringiensis (Bt) Cry toxins involves toxin stabilization, oligomerization, passage across the peritrophic membrane (PM), binding to midgut receptors and pore-formation. The residues Arg-158 and Tyr-170 have been shown to be crucial for the toxicity of Bt Cry4Ba. We characterized the biological function of these residues. In mosquito larvae, the mutants R1...
متن کاملAnalysis of mosquito larvicidal potential exhibited by vegetative cells of Bacillus thuringiensis subsp. israelensis.
Vegetative Bacillus thuringiensis subsp. israelensis cells (6 X 10(5)/ml) achieved 100% mortality of Aedes aegypti larvae within 24 h. This larvicidal potential was localized within the cells; the cell-free supernatants did not kill mosquito larvae. However, they did contain a heat-labile hemolysin which was immunologically distinct from the general cytolytic (hemolytic) factor released during ...
متن کاملLarvicidal Activities of Indigenous Bacillus thuringiensis Isolates and Nematode Symbiotic Bacterial Toxins against the Mosquito Vector, Culex pipiens (Diptera: Culicidae)
BACKGROUND The incidence of mosquito-borne diseases and the resistance of mosquitoes to conventional pesticides have recently caused a panic to the authorities in the endemic countries. This study was conducted to identify native larvicidal biopesticides against Culex pipiens for utilization in the battle against mosquito-borne diseases. METHODS Larvicidal activities of new indigenous Bacillu...
متن کاملBiosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6.
The 130-kilodalton mosquito larvicidal gene, cloned from Bacillus thuringiensis var. israelensis, was introduced into the cyanobacterium Agmenellum quadruplicatum PR-6 by plasmid transformation. Transformed cells synthesized 130-kilodalton delta-endotoxin protein and showed mosquito larvicidal activity. Results demonstrate a potential use of a cyanobacterium for biological control of mosquitoes.
متن کامل